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Abstract: Serotoninergic psychedelics such as psilocybin have been reported to elicit a long-lasting re-
duction in depressive symptoms. Although the main target for serotoninergic psychedelics, serotonin
type 2A receptor (5-HT2A), has been established, the possible mechanism of the antidepressant action
of psychedelics remains unknown. Using the mouse forced swim test model, we examined whether
the administration of the synthetic serotoninergic psychedelic 2,5-dimethoxy-4-iodoamphetamine
(DOI) would modulate 5-HT2A receptor levels in the medial prefrontal cortex (mPFC) and revert
stress-induced changes in behavior. Mice subjected to swim stress developed a passive stress-coping
strategy when tested in the forced swim test 6 days later. This change in behavior was not associated
with the hypothesized increase in 5-HT2A receptor-dependent head twitch behaviors or consistent
changes in 5-HT2A receptor levels in the mPFC. When DOI was administered 1 day before the
forced swim test, a low dose (0.2 mg/kg i.p.) unexpectedly increased immobility while a high dose
(2 mg/kg i.p.) had no significant effect on immobility. Nevertheless, DOI evoked a dose-dependent
decrease in 5-HT2A levels in the mPFC of mice previously exposed to swim stress. Our findings do
not support the hypothesis that the downregulation of 5-HT2A receptors in the mPFC contributes to
the antidepressant-like properties of serotoninergic psychedelics.

Keywords: behavioral despair; 5-HT2A; downregulation; DOI; psychedelics; stress; mPFC; head
twitch; mice

1. Introduction

Major depressive disorder is a common and severe mental disorder that affects more
than 300 million people globally. It is the leading cause of disability, a major contributor
to the global burden of disease and an important cause of age-standardized life-years
lost [1,2]. The available evidence indicates that the majority of individuals with major
depressive disorder do not achieve and sustain full remission with the currently approved
antidepressant treatments [2,3]. Psychedelic substances have been used for spiritual and
medicinal purposes for thousands of years [4], and emerging clinical evidence supports
their use for the treatment of psychiatric disorders [5]. Recent studies indicate that treatment
with serotoninergic psychedelic psilocybin can induce a rapid-onset and long-lasting de-
crease in symptom severity in patients suffering from treatment-resistant depression [6–10].
However, it is a subject of active debate as to what extent the acute psychedelic response
contributes to the observed therapeutic effects of serotoninergic psychedelics [11,12].

Serotoninergic psychedelics, such as psilocybin, mescaline, dimethyltryptamine (DMT)
or lysergic acid diethylamide (LSD) exert their effects on altered consciousness and positive
mood states through the activation of serotonin (5-hydroxytryptamine, 5-HT) receptors.
Most notably, they act as biased (partial or full) agonists of 5-HT2A receptors, and this is
widely considered to underlie their psychedelic effects in humans [13–18]. Nevertheless,
serotoninergic psychedelics may also bind to other receptors such as 5-HT2C and 5-HT1A
receptors [19–26]. Interestingly the 5-HT2A receptor is also a common validated target of
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several classes of psychotropic drugs such as atypical antipsychotics, that are effective
against negative symptoms of schizophrenia, but also a target of several clinically used
antidepressants, such as trazodone and mirtazapine [27–29]. However, these drugs act as
antagonists of the 5-HT2A receptor. Nevertheless, the notion that 5-HT2A agonism is an
undesirable property for psychotropic medication has recently been challenged [5].

Serotoninergic psychedelics induce 5-HT2A receptor internalization from the plasma
membrane to the cytoplasm [30–32]. Paradoxically, atypical antipsychotics that act as
5-HT2A receptor antagonists also elicit 5-HT2A receptor internalization [33,34]. Interest-
ingly, the tethering of 5-HT2A receptors to the cell membrane by a post-synaptic density
of 95 kDA (PSD-95) appears critical for the acute effects of both psychedelics and atypical
antipsychotics [35]. The downregulation of 5-HT2A receptors has been observed following
the chronic administration of selective serotonin receptor inhibitors (SSRI) [36–39], and
the genetic disruption of 5-HT2A signaling was shown to interfere with the antidepressant
action of SSRI [40]. This raises the question of whether the downregulation of 5-HT2A
receptors and the subsequent changes in 5-HT2A signaling may contribute to antidepres-
sant drug action. In support of this notion, 5-HT2A antagonism exerts antidepressant-like
effects [41–44] and potentiates the antidepressant-like effects of SSRIs and other antidepres-
sants [40,42,45–47]. Moreover, atypical antipsychotics are clinically effective in augmenting
SSRI treatment in treatment-resistant depression [48,49].

Studies on 5-HT2A receptor levels in patients suffering from depression show incon-
sistent results. While most post-mortem studies find increased 5-HT2A receptor levels
in the prefrontal cortex of suicide victims with depression [50–55], some studies report
no difference [56,57]. While a handful of positron emission tomography (PET) studies
found increased 5-HT2A receptor binding in healthy subjects at risk of depression [58,59],
medication-free recovered patients [60] and severely depressed patients [61], most PET
studies found evidence for decreased prefrontal cortex 5-HT2A receptor expression in sub-
jects with depression [62–66]. One potential confounding factor is that the treatment of
patients with SSRI may also decrease 5-HT2A receptor levels [67–69]. In rodents, stress ex-
posure was previously reported to induce a delayed and long-lasting increase in the density
of 5-HT2A receptors in the frontal cortex [70–75], which is associated with the augmentation
of 5-HT2A receptor-mediated head twitch responses [71,76–80]. Similar increases in 5-HT2A
receptor expression and sensitivity were observed following the chronic stimulation of
glucocorticoid release [81] or increased glucocorticoid receptor activation [82,83]. This
suggests that 5-HT2A receptor expression is under glucocorticoid receptor control [84].
Nevertheless, some studies also found no significant effects of stress on cortical 5-HT2A
receptor binding or 5-HT2A receptor-mediated head twitch responses in rodents [85–87].
The effect may depend on the type and duration of stress exposure [88].

Several previous studies have shown that serotoninergic psychedelics can decrease
immobility in rodents during the forced swim test, which is typically interpreted as an
antidepressant-like effect [89–91]. These effects may be dependent on prior exposure to
stress and are typically long-lasting [90,91]. We here hypothesized that 5-HT2A downregula-
tion and the normalization of 5-HT2A signaling could contribute to the antidepressant-like
effects of serotoninergic psychedelics. To test our hypothesis, we investigated whether the
exposure of mice to swim stress altered 5-HT2A receptor-mediated head twitch responses
and 5-HT2A receptor protein levels in the plasma membrane fractions of the medial pre-
frontal cortex (mPFC). Moreover, we investigated whether the synthetic serotoninergic
psychedelic, DOI, altered forced-swim-test behavior in mice and 5-HT2A receptor protein
levels in the plasma membrane fractions of the mPFC.

2. Results
2.1. Head Twitch Response

We first investigated whether exposure to swim stress had long-lasting effects on
5-HT2A receptor sensitivity, as measured by the head twitch response following the admin-
istration of DOI. We chose DOI for our experiments given that this compound is extensively



Int. J. Mol. Sci. 2022, 23, 15284 3 of 17

characterized in rodents as a selective 5-HT2 receptor agonist with an approximately 4-fold
higher affinity for 5-HT2A compared to 5-HT2C [92,93]. Moreover, previous studies have
shown that the effects of DOI (in a dose of up to 2 mg/kg) on head twitching and other be-
haviors are completely abolished in 5-HT2A receptor knockout mice. Head twitch behavior
was observed immediately after drug administration [15,94,95].

We found that DOI dose-dependently increased head twitch responses but the effect
of DOI was not influenced by prior stress exposure (Figure 1B; treatment: F (1, 48) = 152.9,
p < 0.0001; stress: F (1, 48) = 0.005, p = 0.95, interaction: F (1, 48) = 0.18; p = 0.67). The
administration of DOI had no significant effect on the distance traveled by mice, irrespective
of prior stress exposure (Figure 1C; treatment: F (2, 74) = 0.66, p = 0.52, stress: F (1, 74) = 0.08,
p = 0.78, interaction F (2, 74) = 1.14, p = 0.33). Taken together, these findings indicate that
prior exposure to swim stress had no long-lasting effects on the evaluated measure of
5-HT2A receptor sensitivity.
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Figure 1. Effect of swim-stress exposure on 5-HT2A receptor-mediated behavior in mice.
(A) Experimental design. Mice were exposed to 15 min forced swim stress or stayed in a home
cage on day 0. On day 6, mice received a single injection of a vehicle solution (1% DMSO in saline,
Con: n = 16, Str: n = 12) or DOI (low dose: 0.2 mg/kg, Con: n = 16, Str: n = 10; high dose: 2.0 mg/kg,
Con: n = 16, Str: n = 10). Behavior of mice was immediately recorded for locomotor activity and
head twitch assessment. (B) Total head twitch count observed for 15 min after treatment. Head
twitch scores for the vehicle groups were obtained and plotted for a limited number of mice and
used as a visual reference. (C) Activity measured by distance traveled. Data are represented as mean
values +/− SEM.

2.2. Forced Swim Test

We hypothesized that the downregulation of 5-HT2A receptors in the mPFC and the
associated changes in 5-HT2A signaling may contribute to the antidepressant-like effects of
serotoninergic psychedelics. Mice received a single administration of DOI on day 6. The
forced swim test was performed on day 7 to exclude the possible locomotor effects of the
compound and to ensure sufficient time for 5-HT2A receptor downregulation [32]. Prior
exposure to swim stress significantly reduced the latency to immobility during the forced
swim test as mice readily adopted a passive stress-coping strategy. However, we found no
significant effects for treatment with DOI (Figure 2A; treatment: F (2, 74) = 0.24, p = 0.79,
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stress: F (1, 74) = 85.75, p < 0.0001; interaction: F (2, 74) = 0.52, p = 0.60). Previous swim-stress
exposure also eliminated climbing behavior in mice, while DOI treatment had no significant
effect (Figure 2C; treatment: F (2, 74) = 1.97, p = 0.15; stress: F (1, 74) = 64.91, p < 0.0001;
interaction: F (2, 74) = 1.56, p = 0.22) and we found that prior exposure to swim stress
significantly increased the time spent immobile in the forced swim test but also observed a
significant effect for treatment with DOI (Figure 2B; treatment: F (2, 74) = 3.19, p = 0.047;
stress: F (1, 74) = 22.94, p < 0.0001; interaction: F (2, 74) = 2.70, p = 0.07). Post-hoc analysis
revealed that the lowest dose of DOI significantly increased immobility in mice previously
exposed to swim stress (p = 0.01). During the analysis of swimming behavior, no significant
effects of stress exposure or DOI treatment effects were observed (Figure 2D; treatment:
F (2, 74) = 2.62, p = 0.08; stress: F (1, 74) = 0.008, p = 0.93; interaction: F (2, 74) = 2.90,
p = 0.06).
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Figure 2. Effect of DOI on passive stress-coping behavior in the forced swim test in mice. (A) Latency
to immobility. (B) Immobility count. (C) Climbing behavior. (D) Swimming behavior. Plots represent
classification of 5 s intervals. Data are represented as mean values +/− SEM. * p < 0.05 vs. Veh group.

2.3. 5-HT2A Receptor Protein Levels

Finally, we analyzed 5-HT2A receptor levels in crude membrane fractions prepared
from mPFC samples (Figure 3A). We used PSD-95 as a loading control given that this
membrane-associated protein is critical for tethering 5-HT2A receptors at the cell surface [35]
(Figure 3B). Analysis of processed 5-HT2A/PSD-95 ratios showed no significant effects for
prior stress exposure but a significant effect for treatment with DOI (Figure 3C; treatment:
F (2, 42) = 4.593, p = 0.02; stress: F (1, 42) = 1.93, p = 0.17; interaction: F (2, 42) = 1.20,
p = 0.31). Post-hoc analysis revealed that the administration of the highest dose of DOI
induced a significant reduction in the 5-HT2A/PSD-95 ratio in mice previously exposed
to stress (p = 0.01). Together, these results indicate that the membrane levels of 5-HT2A
receptors in stressed mice are significantly reduced one day after the administration of
DOI. However, lowered 5-HT2A receptor protein levels were not associated with changes
in immobility in the forced swim test.
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Figure 3. Effects of DOI administration on 5-HT2A/PSD-95 ratio in a crude membrane fraction of
the mouse mPFC. (A) Representation of a target area. (B) Representative western blot results for the
5-HT2A receptor and PSD-95 signal. (C) Quantification of 5-HT2A/PSD-95 signal ratio, normalized to
control vehicle group. Data are represented as mean values +/− SEM. * p < 0.05 vs. Veh group.

3. Discussion

We hypothesized that 5-HT2A downregulation and the normalization of 5-HT2A signal-
ing could contribute to the antidepressant-like effects of serotoninergic psychedelics. While
mice exposed to swim stress rapidly developed a passive stress-coping strategy, stress
exposure did not lead to a higher sensitivity of 5-HT2A receptors or increased membrane
levels of these receptors in the mPFC. While the administration of DOI led to a pronounced
decrease in 5-HT2A receptor levels in the mPFC of mice previously exposed to stress, this
was not associated with lower immobility in the forced swim test.

Brief stress exposure has been previously reported to induce a transient suppression
of the 5-HT2A receptor-mediated head twitch response [96] followed by a delayed and
long-lasting increased head twitch [71]. This is associated with a stress-induced increase
in 5-HT2A receptor density in the cortex [70–72]. Likewise, repeated stress was shown to
increase the 5-HT2A receptor-mediated head twitch response [76,77] and the cortical density
of the 5-HT2A receptors [72,74,75,97]. However, some studies also found no significant
effects of stress exposure on cortical 5-HT2A receptor binding or 5-HT2A receptor-mediated
head twitch responses in rodents [85–87]. In our experiments, we observed a trend towards
increased 5-HT2A receptor levels in mPFC membrane fractions. However, this did not reach
statistical significance. Similarly, we found no significant effects for swim stress on 5-HT2A
receptor-dependent head twitch responses following the administration of DOI. Taken
together, it remains unclear whether and how stress exposure would lead to long-lasting
changes in 5-HT2A receptor levels in the rodent mPFC. Differences in the type of stressor,
duration of stress exposure, time since stress exposure or technical differences related to
the isolated brain region or to the method for the determination of 5-HT2A receptor levels
may contribute to the differences in the literature [88]. Moreover, a more complex role
of 5-HT2A in stress coping could be suspected. Indeed, 5-HT2A receptor deficiency was
recently shown to alter the metabolic and transcriptional but not behavioral consequences
of chronic unpredictable mild stress [98].
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The downregulation of 5-HT2A receptors has been observed following the chronic admin-
istration of SSRI [36–39], and 5-HT2A antagonism exerts antidepressant-like effects [41–44]
or increases the efficacy of antidepressants [40,42,45–47]. We therefore hypothesized
that the DOI-induced downregulation of 5-HT2A receptors would be associated with
an antidepressant-like response in the forced swim test. Importantly, the genetic ablation of
5-HT2A receptors in mice does not induce an antidepressant-like response per se [99], but
interferes with the antidepressant-like responses to SSRI [100]. DOI-induced desensitization
and the internalization of 5-HT2A receptors have been observed previously [16,32,101], and
5-HT2A receptors present a cross-tolerance effect to psychedelics, related to the downreg-
ulation of these receptors independent of β-arrestin 2, a protein typically involved in the
trafficking of 5-HT2A receptors after its interaction with non-psychedelic agonists [16,32].
Interestingly, while non-psychedelic 5-HT2A agonists (such as 5-HT) or inverse agonists
(such as clozapine) were shown to elicit rapid internalization with recycling in approxi-
mately 2.5 h, the psychedelic agonist DOI induced slow internalization with recycling in
approximately 7.5 h [101]. In addition, repeated administration with a non-psychedelic
agonist of the 5-HT2A receptor does not have an effect on the efficacy of LSD or DOI to
induce a behavioral response [32]. These differences in downstream effects and recycling
kinetics could be associated with variations in 5-HT2A phosphorylation induced by non-
psychedelic and psychedelic ligands [16]. Our results support the notion that DOI elicits
the downregulation of 5-HT2A receptors in the cortex for at least 24 h. Previous studies
similarly found that the single and repeated administration of DOI resulted in functional de-
sensitization and reduced 5-HT2A receptor binding in rodents [31,32]. However, functional
5-HT2A receptor desensitization does not necessarily correspond to decreased total 5-HT2A
protein levels but may reflect redistribution from the plasma membrane to the cytosol [31].
Given the time course of the observed effects on 5-HT2A levels, it is possible that, beyond
internalization, DOI will also affect 5-HT2A receptor expression through transcriptional
and translational mechanisms. Interestingly, we observed that DOI-induced 5-HT2A re-
ceptor downregulation was more pronounced in mice that were previously exposed to
swim stress. Similarly, SSRIs were previously shown to induce stronger 5HT2A receptor
downregulation in isolation-reared mice [102]. Nevertheless, the functional consequences
of reduced 5-HT2A receptor levels in the mPFC remain unclear since in our study we found
no association with reduced immobility in the forced swim test.

Previous studies have investigated the effects of serotoninergic psychedelics on stress
coping in rodents [12,89,103–107]. One previous study found that a single administration
of DOI did not have an acute effect on immobility behavior in the forced swim test in
rats [42]. Similarly, the repeated administration of LSD did not induce antidepressant-like
effects in non-stressed mice [104]. A single dose of psilocybin had no significant effect
on immobility in the forced swim test in rats, when the test procedure followed 24 h
after drug administration [107]. Moreover, single or repeated doses of psilocybin had
no antidepressant-like effects in control rats or the Flinders Sensitive Line rat model of
depression [103]. In contrast to these studies, both LSD and psilocybin were shown to
induce delayed antidepressant-like effects in rats exposed to a forced swim test, up to
5 weeks after the drug administration [91]. In other studies, DOI reduced immobility when
administered 24 h before the forced swim test in mice that were not previously exposed to
swim stress [108] and the non-psychedelic ibogaine analog (tabernanthalog; TBG) reduced
immobility when administered 24 h before the forced swim test in mice that were previously
exposed to a single session of swim stress [106]. Moreover, the repeated administration of
N,N-dimethyltryptamine (DMT) after swim-stress exposure and before the forced swim
test significantly reduced immobility in rats [89]. Taken together, it remains uncertain why
these discrepancies have been described in the literature. We propose that other models
with extensive stress exposure, such as the chronic unpredictable mild stress paradigm,
may be more informative when studying the antidepressant-like effects of psychedelics.

It is tempting to speculate that the antidepressant-like effects of psychedelics are
dependent on the duration and type of prior stress exposure, the timing between stress
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exposure and psychedelic administration and the dose and duration of the psychedelic
administration. In this context, our observation of increased immobility after a low dose
of DOI in mice that were previously exposed to swim stress remains puzzling. This effect
was not associated with the increased sensitivity of the 5-HT2A receptor at the time of
DOI administration, nor did it significantly alter 5-HT2A receptor levels in the mPFC at
the time of the forced swim test. The notion that this effect of the low dose of DOI was
only observed in mice previously exposed to swim stress suggests a role of the memory
in acquired stress-coping behaviors. Indeed, 5-HT2A receptors appear to play a role in
associative learning and memory systems [109–111]. While in humans serotoninergic
psychedelics produce dose-dependent increasing impairments in spatial memory task
performance, they also stimulate the recall of autobiographical memories and increase the
vividness of these memories [112]. However, few studies have investigated the long-term
effects. One study found that a low dose of LSD improves measures for visuospatial
memory 24 h after administration [113]. In our experiments, increased immobility 24 h after
the administration of DOI may thus reflect better memory recall for the previous swim-
stress exposure and a more robust expression of the corresponding passive stress-coping
mechanism. However, given that 5-HT2A receptors are necessary for episodic memory
recall and reconsolidation [110,111], and that the highest dose of DOI decreased mPFC
5-HT2A receptors 24 h later, this may have resulted in poorer memory recall for the previous
swim-stress exposure.

It remains unclear whether the 5-HT2A receptor is involved in the previously reported
antidepressant-like effects of psychedelics [12]. Indeed, the 5-HT2A/5-HT2C antagonist
ketanserin (4 mg/kg) blocked the antidepressant-like effects of the ibogaine analog TBG in a
forced swim test paradigm similar to the one used in our study [106], while a slightly lower
dose of ketanserin (2 mg/kg) did not reverse the antidepressant-like effects of psilocybin
in a chronic multimodal stress paradigm [12]. Experiments in 5-HT2A receptor knockout
mice should further resolve this issue, and further demonstrate that the antidepressant-like
effects of serotoninergic psychedelics are indeed mediated by 5-HT2A receptors and do not
involve any of the other receptors for which serotoninergic psychedelics show affinity, such
as 5-HT2C or 5-HT1A [4].

Interestingly, the activation of 5-HT2C receptors appears to oppose the behavioral
effects of 5-HT2A activation. Indeed, 5-HT2C receptor agonists do not produce head
twitch responses but dose-dependently suppress DOI-induced head twitch responses
in mice [114,115]. Similarly, while 5-HT2A activation increases locomotor activity and de-
creases anxiety, 5-HT2C agonists produce hypolocomotion [94,115] and increase
anxiety [116,117]. Moreover, 5-HT2C overexpressing mice show hypolocomotion and in-
creased anxiety [118], whereas 5-HT2C knockout mice show increased exploratory activity
and decreased anxiety [119]. Importantly, heteromerization has been described for 5-HT2A
and 5-HT2C receptors. The notion that the binding properties of the 5-HT2A protomer
are influenced by 5-HT2C receptors suggests an allosteric mechanism [120]. This is in-
deed also supported by the observation that the DOI-induced suppression of dorsal raphe
firing is abolished in 5-HT2A knockout mice [40] but also attenuated by the exogenous
overexpression of an inactive form of the 5-HT2C receptor in the locus coeruleus [121].
Whereas 5-HT2A is the preferential target of lower doses of DOI, 5-HT2A signaling can
clearly be influenced by 5-HT2C receptors, either by the direct binding of psychedelics to
these receptors, or through heteromerization and allosteric mechanisms. This implies that
altered 5-HT2C receptor levels, induced by the administration of psychedelics such as DOI,
may also affect behavioral outcomes. Future studies should therefore consider the interplay
between 5-HT2A and 5-HT2C receptors more carefully.

Finally, while the 5-HT1A receptor is not a high-affinity target for DOI, it has been
demonstrated to have a modulatory role in the effects of other serotoninergic psychedelics
such as psilocybin and LSD [122,123]. In this context, LSD was shown to induce a rebal-
ancing 5-HT2A/5-HT1A signaling, with a decrease in 5-HT2A signaling and an increase
in 5-HT1A signaling in the hippocampus of the bulbectomy rat model [124]. Moreover,
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increased cortical spinogenesis and an enhancement of 5-HT neurotransmission following
repeated LSD administration in stress-exposed mice were associated with 5-HT1A receptor
desensitization in dorsal raphe 5-HT neurons [104]. Indeed, psychedelics can have a perva-
sive effect on 5-HT signaling, through presynaptic and postsynaptic mechanisms [109,125],
but the pharmacological mechanisms through which they exert their antidepressant-like
effects in rodents are not clear. In addition, to what extent these observations in rodents
can be translated to humans remains unclear. One important limitation of our study is
that our conclusions are restricted to behavioral observations in the forced swim test. It
is clear that the forced swim test does not replicate the broad spectrum of a depression-
like phenotype [126] and may lack predictive validity [127,128]. Examining the effects of
psychedelics on the performance of rodents in tests measuring appetitive behaviors, such
as the female urine test [12] and the sucrose preference test [129], could provide a comple-
mentary perspective. This may be particularly true for psychedelics, where the human
psychedelic experience may be difficult to model in rodents, and where the evaluation of
parameters that can also be observed in humans, such as functional connectivity in brain
networks [130] may hold better translational value.

4. Materials and Methods
4.1. Animals

All experiments were carried out on male C57BL/6JRj mice (Janvier, Le Genest-
Saint-Isle, France). Mice were 8–12 weeks old at the time of experiments and were
group-housed (5 per cage; 425 × 276 × 153 mm; 1290D Eurostandard Type III cages,
Tecniplast, Buguggiate, Italy) in standard laboratory conditions with a 12/12 h day-night
cycle, and controlled temperature (20–24 ◦C) and humidity (30–60%). Food (A04, Safe
Diets, Augy, France) and water were provided ad libitum. Cages were enriched with nest-
ing material, gnawing sticks and a Mouse-House shelter (Tecniplast, Buguggiate, Italy).
Mice were habituated to the animal facility at least one week prior to further manipulation.
Before the first behavioral test, mice were habituated to handling by the male experi-
menter for approximately two minutes per day on three consecutive days. The behavioral
experiments were carried out between 8:30 and 14:30.

4.2. Drugs and Administration

Stock solutions of the 5-HT2A/5-HT2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine
hydrochloride (DOI, Tocris Bioscience, Bristol, UK) were prepared in 99.9% dimethylsul-
foxide (DMSO; Sigma-Aldrich Chemicals, Darmstadt, Germany) and stored at −20 ◦C.
Working solutions were prepared by diluting the stock solution in sterile saline (0.9% NaCl,
Baxter, Brussels, Belgium) the day before the administration and stored overnight at +4 ◦C
until use. DOI was diluted to the final concentration in an intraperitoneal (i.p.) injection
volume of 10 mL/kg. The working solutions contained up to 5% V/V DMSO in sterile
saline. Control mice received 10 mL/kg of 5% V/V DMSO in sterile saline. The low
(0.2 mg/kg) and high (2.0 mg/kg) doses were selected based on preliminary data and the
previous literature [95,131]. Mice received drug injections on day 6 of the experiment, one
day before a forced swim test procedure and brain tissue extraction (Figure 1A).

4.3. Head Twitch Response

The administration of DOI or other psychedelics induces head twitch responses
in mice [132]. This stereotypical behavior is driven by the activation of 5-HT2A recep-
tors and can be used as an indirect in vivo measure of the sensitivity of these recep-
tors [71,133]. To evaluate head twitch responses, mice were placed in a single housing cage
(268 × 215 × 141 mm; 1264C Eurostandard Type II cages, Tecniplast, Buguggiate, Italy)
in the experimental room for a habituation period of 60 min. The testing cage had fresh
bedding material mixed in with the bedding material of the homecage of the tested mouse.
After habituation, mice were injected with vehicle or DOI and their behavior was recorded
by a webcam placed 50 cm above the cage and registered in MP4 format (Debut v 2.02, NCH
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software, Greenwood, CA, USA). Mouse behavior was recorded for a duration of 15 min
following drug administration. The activity of mice, measured by their velocity and dis-
tance traveled, was analyzed with Ethovision XT (Noldus, Wageningen, The Netherlands)
and an observer blinded to treatment scored the number of head twitch responses manually.
Although head twitch behavior was only expected in mice treated with DOI, we also plotted
the head twitch responses of mice treated with vehicle as a reference (n = 6 in non-stressed
group; n = 2 in stress exposed group).

4.4. Locomotor Activity

The locomotor activity of mice was extracted from video recordings obtained during
the head twitch observation, where each mouse was observed in single housing cage
(268 × 215 × 141 mm; 1264C Eurostandard Type II cages, Tecniplast, Buguggiate, Italy) with
bedding from their home cage mixed in. Each mouse was monitored for 15 min by a video
tracking system (Ethovision XT, Noldus, Wageningen, The Netherlands). The activity was
measured as the distance traveled following the calibration of the video tracking software.

4.5. Forced Swim Test

When exposed to inescapable swim stress, mice develop a passive stress coping strat-
egy (immobility), that is typically interpreted as an indicator of depressive-like
behavior [134–136]. We carried out a modified version of the forced swim test (day 0)
as previously described [71]. Mice were pre-exposed to 15 min swim stress and were
subjected to a 5 min forced swim test 6 days later (on day 7). Additional control mice were
included that were not exposed to 15 min swim stress but were handled and subjected
to a 5 min forced swim test 6 days later. During the first exposure to swim stress and the
subsequent forced swim test, mice were placed in a brightly illuminated (400 lux) cylinder
glass tank (diameter: 16 cm, height: 24 cm) filled with tap water (25 ± 1 ◦C, 17 cm deep).
Mice were closely observed during the procedures and their behavior was recorded by
a webcam placed 30 cm in front of the glass tank and registered in MPG format (Debut
v 2.02, NCH software, Greenwood, CA, USA). After each session, mice were removed from
the glass tank, carefully dried with a paper towel and placed in an externally warmed
recovery cage for at least 10 min after which they were returned to their home cage. An ob-
server that was blinded to treatment analyzed the stress-coping behavior during the 5 min
forced swim test by classifying the most predominant behavior per 5 sec interval. Climbing
was scored when mice took a vertical body position and its paws broke the surface of the
water, swimming was scored when the animal had a horizontal body position and travelled
at least a diameter of the cylinder, immobility was scored otherwise. The analysis was
performed on the counts of predominant behaviors.

4.6. Western Blot

The protein levels of 5-HT2A receptors were analyzed by Western blot. Within 5 min
after the forced swim test, mice were sacrificed by neck dislocation, and the medial part of
the prefrontal cortex (mPFC; anterior-posterior 1.5 +/− 0.5 mm, according to the stereotactic
brain atlas) was dissected, snap-frozen in 2-methylbutane on dry ice (Sigma-Aldrich,
Darmstadt, Germany) and stored at −80 ◦C. Crude membrane fractions were prepared as
follows: pre-chilled lysis buffer (0.32 M sucrose in HEPES 5 mM, pH 7.4; Sigma-Aldirch,
Darmstadt, Germany) containing ethylenediaminetetraacetic acid (EDTA; (ThermoFisher,
Bremen, Germany), HALT protease inhibitors (ThermoFisher, Bremen, Germany), and
phosphatase inhibitor cocktail II (ThermoFisher, Bremen, Germany) was added to the
frozen tissue at a volume of 10 µL per mg of tissue. Samples were homogenized with a
pestle connected to a drill, for 20 s. Homogenized samples were cleared at 1000 g to remove
nuclei and large debris. The resulting supernatants were concentrated twice at 12,000 g
for 20 min to obtain a crude membrane fraction, each time resuspended in a 5 mM HEPES
pH 7.4 buffer. All preparation steps were performed at +4 ◦C, and prepared samples were
aliquoted and stored at −80 ◦C.
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To analyze 48 samples (n = 8 per experimental group), the full experiment was loaded
onto two Criterion Bis-Tris 10% gels (Bio-Rad) that were processed in parallel. One aliquot
of each sample was used to calculate protein concentration with a Pierce BCA assay
(ThermoFisher, Bremen, Germany). Sample volumes corresponding to 15 µg of protein were
mixed with XT loading buffer (Bio-Rad, Temse, Belgium) and XT reducing agent (Bio-Rad)
and loaded into gels. Precision Plus Protein Dual Color ladder (Bio-Rad, Temse, Belgium)
was loaded into a middle well. After electrophoresis was performed in MES XT running
buffer (Bio-Rad, Temse, Belgium), the resolved samples were wet-transferred to PVDF
membranes (Bio-Rad, Temse, Belgium). The protocol was optimized for incubation in 50 mL
falcon tubes on a rotator. The membrane was cut into two pieces, along the ladder in order
to fit into the tube. Membrane pieces were then processed in parallel as follows. The pieces
were blocked with 4% bovine serum albumin (BSA) in tris-buffered saline with 0.1% Tween-
20 (TBST; Tris from Bio-Rad, Belgium, Tween-20 obtained from Sigma-Aldrich, Bremen,
Germany) for 60 min at room temperature. The membrane pieces were then incubated in
TBST with anti-5-HT2A receptor rabbit antibodies (1:500; Immunostar, Hudson, WI, USA)
overnight on a rotator. The next morning, membrane pieces were rinsed and washed with
TBST three times and incubated with HRP-conjugated secondary antibodies (1:12,500; Cell
Signaling Technology, Leiden, The Netherlands) in TBST, for 60 min at room temperature
on a rotator. Membrane pieces were then rinsed and washed with TBST five times for
10 min before incubating with SignalFire ECL Plus Reagent (Cell Signaling Technology,
Leiden, The Netherlands), for 1 min. The images were acquired with ChemiDocMP (Bio-
Rad, Temse, Belgium), in signal accumulation mode. After obtaining the signal for the
targeted protein, membrane pieces were stripped with a 2.2 pH mild stripping buffer
containing 0.0035 M of sodium dodecyl sulfate (SDS; Sigma Aldrich, Bremen, Germany),
0.2M glycine (Bio-Rad, Temse, Belgium) and 1% Tween-20. Membrane pieces were then
incubated overnight with rabbit antibodies targeted at PSD-95 (1:2000; Cell Signaling
Technology, Leiden, The Netherlands). The rest of the steps required for detection took
place as described above, using a secondary antibody concentration 1:30,000. All used
solutions were prepared using milliQ water. The intensities of the 5-HT2A receptor signal
and the PSD-95 signals were measured with ImageJ version 1.5.3 (National Institutes of
Health, Bethesda, Maryland, USA) Gel Analyze plugin from Fiji distribution package [137].
For each sample, the 5-HT2A/PSD-95 ratio was determined and normalized to the average
ratio obtained for the non-stressed vehicle samples on each membrane piece.

4.7. Statistics

Statistical analysis was performed using Graphpad Prism software 9.1.2 (Graphpad
Software, San Diego, CA, USA). Values are expressed as mean ± s.e.m and α was set at
0.05. Two-way ANOVA was performed using treatment and prior exposure to swim stress
as independent factors. Post-hoc comparisons were adjusted with Bonferroni’s multiple
comparison test.

5. Conclusions

Taken together, our data do not show significant effects of swim-stress exposure
on 5-HT2A receptor sensitivity or 5-HT2A receptor protein levels in the mPFC of mice.
While the administration of the serotoninergic psychedelic DOI induced a significant
reduction in 5-HT2A receptors in the mPFC of mice previously exposed to swim stress, this
was not associated with an antidepressant-like effect, measured as reduced immobility
in the forced swim test. We suggest that further experiments aiming to describe the
effects of serotoninergic psychedelics on stress coping should consider utilizing testing
procedures that are not contingent on stress induction to avoid potential bias resulting
from 5-HT2A receptor involvement in the memory processes [111,138–140], and to explore
how psychedelics affect different domains challenged by depression, such as reward-
driven behaviors. As studies exploring the long-term effects of psychedelics involving



Int. J. Mol. Sci. 2022, 23, 15284 11 of 17

neuroplasticity and gene expression are currently gaining traction [108,141–143], it would
be interesting to explore the interaction of these processes with behavioral interventions.
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